If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+15x-9=0
a = 36; b = 15; c = -9;
Δ = b2-4ac
Δ = 152-4·36·(-9)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-39}{2*36}=\frac{-54}{72} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+39}{2*36}=\frac{24}{72} =1/3 $
| 12x+4=6x+22 | | 2x+4+6x+22=180 | | (x^2-7x+12)(x+6)=0 | | (n-4)(n-2)=2 | | 0=1.52(10)-x | | x²-6=6x+10 | | 4x/8-4/2=x | | 3-2=3(x+5) | | x2+3x−10=0 | | 7-2(3x+5)=-7 | | 4b-15-4=24 | | -2(x+4)–6=-4(x–4) | | 2.2(9.3r-10.2)=83.2 | | -3=-2x3-5 | | (X-8)°+(x+50)°+x°=180° | | 3x-10+2x+6=180 | | 9x-7=30(7x-34x) | | 3x^2-4x-80=0 | | 8x-14=13x+5 | | 7x=10x-90 | | 9=3/4h | | 14x+5=6x+24 | | -7x-5=−10x−26 | | x-1/2+27=15 | | 10.24=y/8 | | 6/v-3-4/v-3=2 | | y2=0.25 | | 5p+7-5p=7p-21 | | -0.7x-2.4=-3.7x-8.91 | | -5n-6=n^2-2n-24 | | 5n+6=n^2-2n-24 | | x=10+5x/6 |